skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schultz, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing computational demand from growing data rates and complex machine learning (ML) algorithms in large-scale scientific experiments has driven the adoption of the Services for Optimized Network Inference on Coprocessors (SONIC) approach. SONIC accelerates ML inference by offloading it to local or remote coprocessors to optimize resource utilization. Leveraging its portability to different types of coprocessors, SONIC enhances data processing and model deployment efficiency for cutting-edge research in high energy physics (HEP) and multi-messenger astrophysics (MMA). We developed the SuperSONIC project, a scalable server infrastructure for SONIC, enabling the deployment of computationally intensive tasks to Kubernetes clusters equipped with graphics processing units (GPUs). Using NVIDIA Triton Inference Server, SuperSONIC decouples client workflows from server infrastructure, standardizing communication, optimizing throughput, load balancing, and monitoring. SuperSONIC has been successfully deployed for the CMS and ATLAS experiments at the CERN Large Hadron Collider (LHC), the IceCube Neutrino Observatory (IceCube), and the Laser Interferometer Gravitational-Wave Observatory (LIGO) and tested on Kubernetes clusters at Purdue University, the National Research Platform (NRP), and the University of Chicago. SuperSONIC addresses the challenges of the Cloud-native era by providing a reusable, configurable framework that enhances the efficiency of accelerator-based inference deployment across diverse scientific domains and industries. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. Batch systems face issues with workloads comprising millions of tasks with short runtimes—scheduling is most efficient for long-running jobs. In addition, the nature of heterogeneous computing systems makes task bundling impractical. Building on HTCondor, the Event Workflow Management System (EWMS) provides an efficient solution to thrive with both paradigms, while featuring user-friendly and self-healing principles. Here, we describe this method, its implementation, and a real-world application. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  3. Abstract Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3‐7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual‐mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high‐density and medium‐density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the geographic South Pole. To accurately and promptly reconstruct the arrival direction of candidate neutrino events for Multi-Messenger Astrophysics use cases, IceCube employs Skymap Scanner workflows managed by the SkyDriver service. The Skymap Scanner performs maximum-likelihood tests on individual pixels generated from the Hierarchical Equal Area isoLatitude Pixelation (HEALPix) algorithm. Each test is computationally independent, which allows for massive parallelization. This workload is distributed using the Event Workflow Management System (EWMS)—a message-based workflow management system designed to scale to trillions of pixels per day. SkyDriver orchestrates multiple distinct Skymap Scanner workflows behind a REST interface, providing an easy-to-use reconstruction service for real-time candidate, cataloged, and simulated events. Here, we outline the SkyDriver service technique and the initial development of EWMS. 
    more » « less
  5. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    The OSG-operated Open Science Pool is an HTCondor-based virtual cluster that aggregates resources from compute clusters provided by several organizations. Most of the resources are not owned by OSG, so demand-based dynamic provisioning is important for maximizing usage without incurring excessive waste. OSG has long relied on GlideinWMS for most of its resource provisioning needs but is limited to resources that provide a Grid-compliant Compute Entrypoint. To work around this limitation, the OSG Software Team has developed a glidein container that resource providers could use to directly contribute to the OSPool. The problem with that approach is that it is not demand-driven, relegating it to backfill scenarios only. To address this limitation, a demand-driven direct provisioner of Kubernetes resources has been developed and successfully used on the NRP. The setup still relies on the OSG-maintained backfill container image but automates the provisioning matchmaking and successive requests. That provisioner has also been extended to support Lancium, a green computing cloud provider with a Kubernetes-like proprietary interface. The provisioner logic has been intentionally kept very simple, making this extension a low-cost project. Both NRP and Lancium resources have been provisioned exclusively using this mechanism for many months. 
    more » « less
  6. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the geographic South Pole. Understanding detector systematic effects is a continuous process. This requires the Monte Carlo simulation to be updated periodically to quantify potential changes and improvements in science results with more detailed modeling of the systematic effects. IceCube’s largest systematic effect comes from the optical properties of the ice the detector is embedded in. Over the last few years there have been considerable improvements in the understanding of the ice, which require a significant processing campaign to update the simulation. IceCube normally stores the results in a central storage system at the University of Wisconsin–Madison, but it ran out of disk space in 2022. The Prototype National Research Platform (PNRP) project thus offered to provide both GPU compute and storage capacity to IceCube in support of this activity. The storage access was provided via XRootD-based OSDF Origins, a first for IceCube computing. We report on the overall experience using PNRP resources, with both successes and pain points. 
    more » « less
  7. Abstract Bio-inspired Topographically Mediated Surfaces (TMSs) based on high aspect ratio nanostructures have recently been attracting significant attention due to their pronounced antimicrobial properties by mechanically disrupting cellular processes. However, scalability of such surfaces is often greatly limited, as most of them rely on micro/nanoscale fabrication techniques. In this report, a cost-effective, scalable, and versatile approach of utilizing diamond nanotechnology for producing TMSs, and using them for limiting the spread of emerging infectious diseases, is introduced. Specifically, diamond-based nanostructured coatings are synthesized in a single-step fabrication process with a densely packed, needle- or spike-like morphology. The antimicrobial proprieties of the diamond nanospike surface are qualitatively and quantitatively analyzed and compared to other surfaces including copper, silicon, and even other diamond surfaces without the nanostructuring. This surface is found to have superior biocidal activity, which is confirmed via scanning electron microscopy images showing definite and widespread destruction ofE. colicells on the diamond nanospike surface. Consistent antimicrobial behavior is also observed on a sample prepared seven years prior to testing date. Graphical Abstract 
    more » « less
  8. null (Ed.)